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Abstract. Within the standard model, we investigate the semi-leptonic weak decays of J/ψ. The various

form factors of J/ψ making the transition to a single charmed meson (D
(∗)
(d,s)
) are studied in the framework

of QCD sum rules. These form factors fully determine the rates of the weak semi-leptonic decays of J/ψ and
provide valuable information on non-perturbative QCD effects. Our results indicate that the decay rate of

the semi-leptonic weak decay mode J/ψ→D
(∗)−
s + e++νe is at the order of 10

−10.

PACS. 13.20.Gd; 13.25.Gv; 11.55.Hx

1 Introduction

Although strong and electromagnetic decays of J/ψ have
been extensively studied for several decades, both experi-
mental and theoretical investigations of weak decays of
J/ψ are lagging much behind. Due to the smallness of
the strength of the weak interaction, the weak decays of
the J/ψ are rare processes. Sanchis-Lonzano suggested to
search for these rare decays, whose sum of branching ratios
were estimated to be at the order of 10−8 [1]. Such pro-
cesses hardly drew much attention, because the database
was far from reaching such accuracy. Thus, for a long time,
few further researches on this topic were done. Thanks to
the progress of accelerator and detector techniques, more
accurate measurements may now be carried out, and thus
the interest on weak decays of J/ψ has been revived. The
BES collaboration indeed has started to measure some rare
weak decays of J/ψ to eventually set an upper bound on
the branching ratio of J/ψ→D+ e+ νe at the order of
10−5 by using a 5.8×107 J/ψ database [2]. The forthcom-
ing upgraded BESIII can accumulate 1010 J/ψ per year [3],
which makes it marginally possible to measure such weak
decays of J/ψ; at least one may expect to observe such
events. Thus, a more careful theoretical investigation of
these decays seems necessary.
Indeed, the weak decays of heavy quarkonium like J/ψ

offer an ideal opportunity of studying non-perturbative
QCD effects, because such systems contain two heavy con-
stituents of the same flavor. The situation is quite dif-
ferent from that for heavy mesons that contain only one
heavy constituent, and the non-perturbative effects might
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be attributed to the light flavor; thus heavy-quark effect-
ive theory (HQET) applies. Moreover, for the weak decay
of a vector meson, the polarization effect may play a role in
probing the underlying dynamics and hadron structure [1].
The weak decay of J/ψ is realized via the spectator

mechanism in which the charm quark (antiquark) decays
and the antiquark (quark) acts as a spectator. The charac-
teristic of the decay modes is that the final state contains
a single charmed hadron. The theory of weak interactions
has been thoroughly investigated and the effective Hamil-
tonian at the quark level is perfectly formulated. The main
job of calculating the rates of the semi-leptonic decays of
J/ψ is to properly evaluate the hadronic matrix elements
for J/ψ→D(∗), namely the transition form factors, which
are obviously governed by non-perturbative QCD effects.
The main aim of this work is to calculate the J/ψ→D(∗)(d,s)
form factors in the QCD sum rule approach.
The weak decay of heavy quarkonium has been studied

by heavy quark spin symmetry [1]. In that framework,
the transition form factors of a heavy quarkonium to
heavy pseudoscalar and vector mesons are parameter-
ized by a universal function η12(v1 ·v2) in analogy to the
Isgur–Wise function for the heavy meson transitions. How-
ever, the non-recoil approximation η12(v1 ·v2)≈ 1 was used
in [1], which would bring about uncontrollable uncertain-
ties to the estimation of decay widths. It seems helpful
to re-investigate these processes based on a more rigorous
theoretical framework.Motivated by the arguments, in this
work we will calculate the form factors for heavy quarko-
nium J/ψ decays into a pseudoscalar or vector meson in
the QCD sum rule approach.
As a matter of fact, many authors have tried to evalu-

ate the transition form factors for the heavy meson and
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quarkonium system in various approaches, such as the sim-
ple quark model [4], the light-front approach [5–16], the
QCD sum rule approach [17, 18], the perturbative QCD ap-
proach [19–24] etc. The QCD sum rule approach, which
is rooted in quantum field theory and which is fully rel-
ativistic, is considered to be one of the effective tools for
analyzing hadronic processes [17]. Besides evaluation of
hadron spectra, the QCD sum rule technique has been
applied to calculation of the pion electromagnetic form
factor at intermediate momentum transfer [25–27], vari-
ous weak decay channels [28],1 the coupling constant of
the strong interaction [30] and even to determine the light
cone distribution amplitudes of hadrons [31–37]. The ad-
vantage of this method is that the non-perturbative QCD
effects are included in a few parameters such as the quark
and gluon condensates, which have an evident physical
meaning [38].
After this introduction, we will first display the effective

Hamiltonian relevant to the semi-leptonic decays of J/ψ to

D
(∗)−
d(s) , and the sum rules for the form factors in Sect. 2.
The Wilson coefficients of various operators, which make
manifest the perturbative QCD effects, are also calculated
in this section with the help of the operator product ex-
pansion (OPE) technique. The numerical analysis of the
form factors is performed in Sect. 3. The decay rates of the
semi-leptonic decay J/ψ→D(∗)−d(s) l

+ν and a comparison of

our results with that obtained based on other approaches
are presented in Sect. 4. In the last section we draw our
conclusions.

2 J/ψ→D(�)d(s) transition form factors
in the QCD sum rule approach

2.1 Definitions of the J/ψ→D(�)d(s) transition form
factors

For the semi-leptonic decays J/ψ→D(∗)
d(s)l

+νl, the effect-
ive weak Hamiltonian is given by

Heff(c→ s(d)lν̄l) =
GF√
2
V ∗cs(d)s̄(d̄)γµ(1−γ5)cν̄lγ

µ(1−γ5)l .

(1)

In calculating the rate of a semi-leptonic decay, the es-
sential ingredient is the hadronic matrix element
〈D(∗)
d(s)|s̄γµ(1−γ5)c|J/ψ〉, which is parameterized by vari-

ous form factors [39]:

〈Dd(s)(p2)|q̄γµ(1−γ5)c|J/ψ(ε, p1)〉

=−εµναβε
νpα1 p

β
2

2V (q2)

mψ+mD

+ i(mψ+mD)

[
εµ−

ε · q

q2
qµ

]
A1(q

2)

1 For a review of QCD sum rule applications to weak decays
of heavy mesons, see [29].

+ i
ε · q

mψ+mD
A2(q

2)

[
(p1+p2)µ−

m2ψ−m
2
D

q2
qµ

]

+2imψ
ε · q

q2
qµA0(q

2) , (2)

〈D∗d(s)(ε2, p2)|q̄γµ(1−γ5)c|J/ψ(ε1, p1)〉

=−iεµναβε
α
1 ε
∗β
2

[(
pν1+p

ν
2−
m2ψ−m

2
D∗

q2
qν
)
Ã1(q

2)

+
m2ψ−m

2
D∗

q2
qνÃ2(q

2)

]

+
i

m2ψ−m
2
D∗
εµναβp

α
1 p
β
2

[
Ã3(q

2)εν1ε
∗
2 · q− Ã4(q

2)ε∗ν2 ε1 · q
]

+(ε1 · ε
∗
2)
[
−(p1µ+p2µ)Ṽ1(q

2)+ qµṼ2(q
2)
]

+
(ε1 · q)(ε∗2 · q)

m2ψ−m
2
D∗

[(
p1µ+p2µ−

m2ψ−m
2
D∗

q2
qµ

)
Ṽ3(q

2)

+
m2ψ−m

2
D∗

q2
qµṼ4(q

2)

]

− (ε1 · q)ε2
∗
µṼ5(q

2)+ (ε∗2 · q)ε1µṼ6(q
2) , (3)

where the conventionTr[γµγνγργσγ5] = 4iεµνρσ is adopted.
For a transition of J/ψ into a charmed pseudoscalar meson
that is induced by the weak current, there are four indepen-
dent form factors: V , A0, A1 and A2; while there are ten
form factors for J/ψ making a transition to a charmed vec-
tor meson, which are parameterized as Ãi (i= 1, 2, 3, 4)and
Ṽj (j = 1, 2, 3, 4, 5, 6). It is worthwhile to emphasize that
the parametrization of the hadronic matrix element for
J/ψ making a transition to a vector meson given in (3)
has been studied less before. A similar matrix element for
the transition of a vector to another vector meson that is
induced by the electromagnetic current was investigated
by Kagan in [40].

2.2 The transition form factors in the QCD sum rule
approach

In this subsection, we calculate the transition form fac-
tors of J/ψ→D(∗)−(d,s) by QCD sum rules. Here we present

the formulations for the J/ψ→D(∗)−s transition explicitly,
while the expressions for J/ψ→D(∗)− can be obtained by

the simple replacements of D
(∗)−
s →D(∗)− and s quark to

d quark.

2.2.1 The matrix element for J/ψ→D−s

Following the standard procedure of the QCD sum rule ap-
proach [25, 26], we write the three-point correlation func-
tion for J/ψ making a transition to D−s as

Πµν = i
2

∫
d4xd4ye−ip1·y+ip2·x〈0|j

D−s
5 (x)jµ(0)j

J/ψ
ν (y)|0〉 ,

(4)

where the current j
J/ψ
ν (y) = c̄(y)γνc(y) represents the

J/ψ channel; jµ(0) = s̄γµ(1−γ5)c is the weak current and
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jD
−

5 (x) = c̄(x)iγ5s(x) corresponds to the D
−
s channel. In

terms of the definitions

〈0|c̄γνc|J/ψ〉=mψfψε
λ
ν , 〈0|c̄iγ5s|Ds〉=

fDsm
2
Ds

mc+ms
,

(5)

we can insert a complete set of hadronic states with the
same quantum numbers as J/ψ and D−s to achieve the
hadronic representation of the correlator (4):

Πµν =
fDsm

2
Ds
〈Ds|jµ|J/ψ〉mψfψε∗λν(

m2
J/ψ
−p21
)(
m2Ds −p

2
2

)
(mc+ms)

+contributions from higher states . (6)

Obviously the lowest hadronic states concerned are J/ψ
and Ds, while the terms with “higher states” represent
contributions coming from higher excited states and from
the continuum. Using the double dispersion relation, the
contributions of excited states and continuum can be ex-
pressed as

contributions from higher states

=

∫∫
Σ12

ds1ds2
ρhµν
(
s1, s2, q

2
)

(
s1−p21

)(
s2−p22

) +subtraction terms ,
(7)

where Σ12 denotes the integration region in the (s1, s2)
plane. ρhµν is the spectral density at the hadron level. The
subtraction terms are polynomials of either p1 or p2, which
should disappear after performing a double Borel trans-

formation B̂M21
B̂M22
, with

B̂M2
i
= lim
−p2i ,n→∞

−p2i /n=M
2

(
−p2i
)(n+1)
n!

(
d

dp2i

)n
. (8)

On the other side, we calculate the correlation function
at the quark level by using the OPE to find

Πµν =−f0εµναβp
α
1 p
β
2 − i(f1p1µp1ν +f2p2µp2ν

+f3p2µp1ν +f4p1µp2ν +f5gµν) , (9)

where each coefficient contains contributions from both the
perturbative part and the non-perturbative part, whose ef-
fects are manifest in several typical condensates,

fi = f
pert
i I+fqqi 〈q̄q〉+f

GG
i 〈GG〉+f

qGq
i 〈q̄Gq〉+ . . . ,

(10)

with fperti , fqqi , f
GG
i and fqGqi , . . . denoting the contribu-

tions to the correlation functions from dimension 0, 3, 4,
5, . . . operators. By quark–hadron duality, one may match
the two different representations of the correlation function
and perform a double Borel transformation on the vari-
ables p1 and p2; then we get the sum rules for the form

factors:

V (q2) =−
(mc+ms)(mψ+mDs)

2mψfψfDsm
2
Ds

× em
2
ψ/M

2
1 em

2
Ds
/M22M21M

2
2 B̂f0 , (11)

A1(q
2) =

(mc+ms)

(mψ+mDs)mψfψfDsm
2
Ds

× em
2
ψ/M

2
1 em

2
Ds
/M22M21M

2
2 B̂f5 , (12)

A2(q
2) =−

(mc+ms)(mψ+mDs)

2mψfψfDsm
2
Ds

× em
2
ψ/M

2
1 em

2
Ds
/M22M21M

2
2 B̂(f2+f4) , (13)

A0(q
2) =−

(mc+ms)

2m2ψfψfDsm
2
Ds

em
2
ψ/M

2
1 em

2
Ds
/M22M21M

2
2

×

[
B̂(f2+f4)

m2ψ−m
2
Ds

2
−B̂(f2−f4)

q2

2
−B̂f5

]
.

(14)

2.2.2 The matrix element for J/ψ→D∗−s

The three-point correlation function of J/ψ toD∗−s is

Πµνρ = i
2

∫
d4xd4ye−ip1·y+ip2·x〈0|j

D∗s
ρ (x)jµ(0)j

J/ψ
ν (y)|0〉 ,

(15)

where the current j
D∗s
ρ (x) = c̄(x)γρs(x) denotes the D

∗−
s

channel, and j
J/ψ
ν (y) and jµ(0) are defined as in the above

subsection. One the one hand, inserting the hadron states,
the correlation function is written as

Πµνρ =
mD∗s fD∗s ε

′
ρ
λ′〈D∗s |jµ|J/ψ〉mJ/ψfJ/ψε

∗λ
ν(

m2J/ψ−p
2
1

)(
m2D∗s

−p22
)

+

∫∫
ds1ds2

ρhµνρ
(
s1, s2, q

2
)

(
s1−p21

)(
s2−p22

)
+subtraction terms . (16)

On the other hand, the correlation function at the quark
level is formulated as

Πµνρ = iF1εµναβp
α
1 p
β
2p1ρ+ iF2εµναβp

α
1 p
β
2p2ρ

+ iF3εµραβp
α
1 p
β
2p1ν + iF4εµραβp

α
1 p
β
2p2ν

+ iF5ενραβp
α
1 p
β
2p1µ+ iF6ενραβp

α
1 p
β
2p2µ

+F7gµνp1ρ+F8gµρp1ν +F9gνρp1µ
+F10gµνp2ρ+F11gµρp2ν +F12gνρp2µ
+F13p1µp1νp1ρ+F14p2µp2νp1ρ+F15p1µp2νp1ρ
+F16p2µp1νp1ρ+F17p2µp2νp2ρ+F18p1µp1νp2ρ
+F19p2µp1νp2ρ+F20p1µp2νp1ρ , (17)

where each coefficient Fi includes contributions from both
perturbative and non-perturbative parts and is written ex-
plicitly as

Fi = F
pert
i I+F qqi 〈q̄q〉+F

GG
i 〈GG〉+F qGqi 〈q̄Gq〉+ . . .

(18)
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Again, equating the correlation functions calculated in
these two frameworks and performing Borel transform-
ations on both sides, we derive the form factors of J/ψ→
D∗−s as follows:

Ã1(q
2) =−

1

4mψfψmD∗−fD∗s
em
2
ψ/M

2
1 e
m2
D∗s
/M22M21M

2
2

×B̂
[
(F5−F6)q

2+(F5+F6)
(
m2ψ−m

2
D∗s

)]
,

(19)

Ã2(q
2) =

m4D∗s −2
(
q2+m2ψ

)
m2D∗s +

(
q2−m2ψ

)2
4
(
m2D∗s

−m2ψ
)
mψfψmD∗s fD∗s

× em
2
ψ/M

2
1 e
m2
D∗s
/M22M21M

2
2 B̂(F5+F6) , (20)

Ã3(q
2) =

m2ψ−m
2
D∗s

mψfψmD∗s fD∗s
em
2
ψ/M

2
1 e
m2
D∗s
/M22M21M

2
2

×B̂(F1−F5) , (21)

Ã4(q
2) =

mψ
2−m2D∗s

mψfψmD∗s fD∗s
em
2
ψ/M

2
1 e
m2
D∗s
/M22M21M

2
2

×B̂(F4+F6) , (22)

Ṽ1(q
2) =−

1

2mψfψmD∗s fD∗s
em
2
ψ/M

2
1 e
m2
D∗s
/M22M21M

2
2

×B̂(F9+F12) , (23)

Ṽ2(q
2) =

1

2mψfψmD∗s fD∗s
em
2
ψ/M

2
1 e
m2
D∗s
/M22M21M

2
2

×B̂(F9−F12) , (24)

Ṽ3(q
2) =

m2D∗s −mψ
2

2mψfψmD∗s fD∗s
em
2
ψ/M

2
1 e
m2
D∗s
/M22M21M

2
2

×B̂(F14+F15) , (25)

Ṽ4(q
2) =

1

2mψfψmD∗s fD∗s
em
2
ψ/M

2
1 e
m2
D∗s
/M22M21M

2
2

×B̂
[
(F14−F15)q

2+(F14+F15)
(
m2D∗s −mψ

2
)]
,

(26)

Ṽ5(q
2) =

1

mψfψmD∗s fD∗s
em
2
ψ/M

2
1 e
m2
D∗s
/M22M21M

2
2 B̂F11 ,

(27)

Ṽ6(q
2) =

1

mψfψmD∗−fD∗s
em
2
ψ/M

2
1 e
m2
D∗s
/M22M21M

2
2 B̂F7 .

(28)

2.3 The Wilson coefficients
for the correlation function Πµν

In this subsection we calculate the Wilson coefficients that
are defined above. To guarantee sufficient theoretical accu-
racy, the correlation functions are required to be expanded
up to dimension-5 operators, namely the quark–gluonmix-
ing condensate. The dimension-6 operators, such as the
four quark condensates, are small and are further sup-
pressed by O(α2s ), so they can safely be neglected in our
calculations.

Fig. 1. Graphs for the Wilson coefficients in the operator pro-
duct expansion of the correlation function. a is for the contribu-
tion of unit operator; b for the two-quark condensate; c–h de-
scribe the contributions from gluon condensate; i and j are for
the quark–gluon mixing condensate

The diagrams that depict the contributions from the
perturbative part and non-perturbative condensates are
shown in Fig. 1. The first diagram results in the Wilson
coefficient of the unit operator; the second diagram is rel-
evant to the contribution of the quark condensate, where
the heavy-quark condensate is neglected. The Wilson co-
efficient of the two-gluon condensate operator is obtained
from Fig. 1c–h. The last two diagrams, Fig. 1i and j, stand
for the contribution of a quark–gluon mixing condensate.
In this work, all of the Wilson coefficients are calculated
at the lowest order in the running coupling constant of the
strong interaction.

2.3.1 Perturbative contributions
to Wilson coefficients for Πµν

The perturbative contribution to the three-point correla-
tion functionΠµν shown in Fig. 1a is included in the follow-
ing amplitude:

Cpertµν = 3i
2

∫
d4k

(2π)4
(−1)Tr

[
γν

i

�k−mc
iγ5

i

�p2+ �k−mq

×γµ(1−γ5)
i

�p1+ �k−mc

]
,

(29)

where mq denotes the mass of the light quark in the D
meson, and the factor “3” is due to the color loop. Using
the dispersion relation, Cpert0µν is written as

Cpert0µν =

∫∫
ds1ds2

ρpertµν

(
s1, s2, q

2
)

(
s1−p21

)(
s2−p22

) . (30)



Y.-M. Wang et al.: The transition form factors for semi-leptonic weak decays of J/ψ in QCD sum rules 111

The integration region is determined by the following
condition:

−1≤
2s1
(
s2+m

2
c−m

2
q

)
− s1
(
s1+ s2− q2

)
λ1/2
(
s1, s2, q2

)
λ1/2
(
m2c , s1,m

2
c

) ≤ 1 , (31)

where λ(a, b, c) = a2+ b2+ c2−2ab−2ac−2bc. The stan-
dard way to calculate the spectral function ρµν(s1, s2, q

2)
is described here [25, 26]: first, it is essential to calculate
the double discontinuity of the amplitude, which can be re-
alized by putting all the internal quark lines of Fig. 1a on
their mass-shell and substituting the denominators of the
quark propagators by the δ functions based on Cutkosky’s
cutting rule,

1

k2−m2+ iε
→−2πiδ(k2−m2) . (32)

Then, the spectral function can easily be achieved. Finally,
we get the expression of the spectral function in the follow-
ing form:

ρµν
(
p21, p

2
2, q
2
)

=
3

(2πi)2
(−2πi)3

∫
d4k

(2π)4
Tr[γν( �k+mc)

×γ5( �p2+ �k+mq)γµ(1−γ5)( �p1+ �k+mc)]

× δ
(
k2−m2c

)
δ
[
(p2+k)

2−m2q
]
δ
[
(p1−k)

2−m2c
]
.

(33)

After tedious calculations, one finally obtains the per-
turbative contribution to the correlation function, which
can be decomposed as the sum of various terms according
to different Lorentz structures, namely,

ρpertµν =−ρ
pert
0 εµναβp

α
1 p
β
2 − i
(
ρpert1 p1µp1ν+ρ

pert
2 p2µp2ν

+ρpert3 p2µp1ν +ρ
pert
4 p1µp2ν+ρ

pert
5 gµν

)
. (34)

The expressions for the ρperti are a bit more tedious, so we
will display their explicit forms in Appendix A.

2.3.2 The quark condensate contribution

Now we turn to the calculation of the Wilson coefficient
of the quark condensate operator, shown in Fig. 1b. One
can easily find that it does not contribute to the cor-
relation function after performing a double Borel trans-
formation on both variables p21 and p

2
2, since the propa-

gator of this diagram, 1
(p22−m

2
c)(q

2−m2c)
, only depends on

the variable p22. In other words, the Wilson coefficient of
the dimension-3 two quark condensate turns out to be
zero in the leading order of the heavy-quark mass ex-
pansion after carrying out a double Borel transformation.
As can be seen, vanishing of the contributions from the
quark condensate is independent on the structures of the
effective vertices; therefore, it also does not contribute to
the decays of J/ψ into a vector meson for the same rea-
son. Below, we do not need to investigate the contribu-
tions of the quark condensate to J/ψ→D∗ based on this
argument.

2.3.3 The contribution from a gluon condensate

The diagrams which determine the Wilson coefficient of
the gluon condensate are shown in Fig. 1c–h. The standard
way is using the so-called fixed-point gauge technique. The
gauge fixing condition is

xµAaµ = 0 , (35)

whereAaµ is the gluon field. In the momentum space,A
a
µ(k)

is transformed to the gauge invariant field strength by

Aaµ(k) =−
i

2
(2π)4Gaρµ(0)

∂

∂kρ
δ4(k)+ . . . (36)

Indeed, the loop integral

Iµ1,µ2,...,µn(a, b, c)

=

∫
d4k

(2π)4
kµ1kµ2 · · ·kµn

[k2−m2]a
[
(p1+k)2−m21

]b[
(p2+k)2−m22

]c ,
(37)

which is encountered in the work, is not easy to be per-
formed by the Feynman parameter method. One alterna-
tive way to calculate this kind of integrals has extensively
been discussed in [38, 41–43], where the authors suggested
to work in Euclidean space-time and employ the Schwinger
representation for propagators. Instead, in our work, we
follow the method employed in [44–46], namely, to directly
calculate the imaginary part of the integrals in terms of
Cutkosky’s rule.
With the help of the Mathematica package “FeynCalc”,

we finally get the contributions of Fig. 1c–h at the price
of some long and tedious derivations and time-consuming
computer computations. The contributions of the gluon
condensates from various sources cancel each other com-
pletely after carrying out a double Borel transformation to
the variables p21 and p

2
2. Therefore, the diagrams involving

the gluon condensate do not contribute to the transition of
a vector meson J/ψ to a pseudoscalarD meson. This argu-
ment also applies to the transition of a pseudoscalar meson
to a vector as discussed in [44–46], since the topologies of
the Feynman diagrams that result in the Wilson coefficient
of the gluon condensate are the same. As analyzed later,
it is also true for the transition of J/ψ to a vector meson.
However, we find that the flavor-changing neutral current
process can receive non-zero contributions from the gluon
condensate. It should be noted that the null contributions
of gluon condensates to sum rules for the weak transition
c→ s(d) are different from that obtained in [41–43], where
the method they adopted does not allow for the subtrac-
tion of continuum contributions.

2.3.4 The quark–gluon mixing condensate contribution

Finally, we proceed by calculating the Wilson coefficients
of the dimension-5 operator 〈q̄Gq〉. Only the two diagrams
shown in Fig. 1i and j are involved. Concentrating on these
two diagrams, we find that they do not contribute to the
correlation function, due to the same reason as that for the
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null contribution from the quark condensate, namely, only
the variable p22 appears in the propagators, and the ampli-
tude will vanish due to a double Borel transformation.
As mentioned at the beginning of this section, we do not

consider the four quark condensate; hence, only the pertur-
bative part, which corresponds to Fig. 1a, offers a non-zero
contribution to the correlation function.

2.4 The Wilson coefficients for the operators
contributing to the correlation function Πµνρ

After the above lengthy discussions, a computation of the
correlation function Πµνρ that determines the transition
amplitude of J/ψ to a vector meson is straightforward. Re-
peating the previous calculations, but replacing the vertex
for the pseudoscalar meson to that for a vector meson, one
can obtain the expressions of the Wilson coefficients for all
the operators concerned.

2.4.1 The calculations of the perturbative contribution
to Πµνρ

TheWilson coefficient of the perturbative part correspond-
ing to Fig. 1a is

Cpertµνρ = 3i
2

∫
d4k

(2π)4
(−1)Tr

[
γν

i

�k−mc
γρ

i

�p2+ �k−md

×γµ(1−γ5)
i

�p1+ �k−mc

]
.

(38)

We rewrite it in the form of dispersion integrals for the sake
of connecting it to the hadronic spectral density based on
the assumption of the quark–hadron duality, as follows:

Cpertµνρ =

∫∫
ds1ds2

ρpertµνρ

(
s1, s2, q

2
)

(
s1−p21

)(
s2−p22

) . (39)

The integration region is the same as that for Cpertµν , which
is presented in (31). Setting all the internal quark lines on
their mass-shells, we derive the spectral function ρpertµνρ as
follows:

ρpertµνρ = iρ
′pert
1 εµναβp

α
1 p
β
2p1ρ+ iρ

′pert
2 εµναβp

α
1 p
β
2p2ρ

+ iρ′pert3 εµραβp
α
1 p
β
2p1ν + iρ

′pert
4 εµραβp

α
1 p
β
2p2ν

+ iρ′pert5 ενραβp
α
1 p
β
2p1µ+ iρ

′pert
6 ενραβp

α
1 p
β
2p2µ

+ρ′pert7 gµνp1ρ+ρ
′pert
8 gµρp1ν +ρ

′pert
9 gνρp1µ

+ρ′pert10 gµνp2ρ+ρ
′pert
11 gµρp2ν +ρ

′pert
12 gνρp2µ

+ρ′pert13 p1µp1νp1ρ+ρ
′pert
14 p2µp2νp1ρ

+ρ′pert15 p1µp1νp1ρ+ρ
′pert
16 p2µp1νp1ρ

+ρ′pert17 p2µp2νp2ρ+ρ
′pert
18 p1µp1νp2ρ

+ρ′pert19 p2µp1νp2ρ+ρ
′pert
20 p1µp2νp1ρ . (40)

Only ρ′perti (i = 1, 4, 5, 6, 7, 9, 11, 12, 14, 15) are related to
the form factors Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5, Ṽ6, Ã1, Ã2, Ã3 and Ã4,
and we display their expressions in Appendix B.

2.4.2 The contribution of the gluon condensate to Πµνρ

Similar to the derivation made above, we easily obtain the
Wilson coefficient of the gluon condensate, which may con-
tribute to the correlation function Πµνρ. Then we rewrite
the Wilson coefficient in the form of dispersion integrals:

CGGµνρ =

∫∫
ds1ds2

ρGGµνρ
(
s1, s2, q

2
)

(
s1−p21

)(
s2−p22

) , (41)

where the integral region is the same as that for the pertur-
bative part.
The Lorentz structures corresponding to ρ

(GG)
i (i =

1, 4, 5, 6, 7, 9, 11, 12, 14, 15) are

ρGGµνρ = iρ
′GG
1 εµνρλp

λ
1 + iρ

′GG
4 εµνρλp

λ
2 + iρ

′GG
5 εµναβp

α
1 p
β
1p1ν

+ iρ′GG6 εµραβp
α
1 p
β
1p1ρ+ρ

′GG
7 gµνp1ρ+ρ

′GG
9 gνρp1µ

+ρ′GG11 gµρp2ν +ρ
′GG
12 gνρp2µ+ρ

′GG
14 gµρp2ν

+ρ′GG15 gνρp2µ+ . . . (42)

After some long and tedious calculations, we find that all of
the above coefficients ρ′GGi are zero. This is completely the
same as for the Πµν case. Therefore, only the perturbative
part survives after performing a double Borel transform-
ation on the two variables p21 and p

2
2 at the leading order of

the heavy-quark mass expansion and QCD running coup-
ling constant expansion for the three-point functionΠµνρ.

3 Numerical results of the form factors
in the QCD sum rule approach

Now we are able to calculate the form factors numerically.
First, we collect the input parameters used in this work as
below [47–49]

mc(mc) = 1.275±0.015GeV ,

ms(1 GeV) = 142MeV , mu(1 GeV) = 2.8MeV ,

md(1 GeV) = 6.8MeV , αs(1 GeV) = 0.517 ,

mJ/ψ = 3.097GeV , mD− = 1.869GeV ,

m
D−s
= 1.968GeV , mD∗− = 2.010GeV ,

m
D∗−s
= 2.112GeV , fJ/ψ = 337

+12
−13MeV ,

fD− = 166
+9
−10MeV , f

D−s
= 189+9−10MeV ,

fD∗− = 240
+10
−10MeV , f

D∗−s
= 262+9−12MeV .

(43)

It should be pointed out that the mass of the charm quark
used in this work is determined from the charmonium spec-
trum in [47]. As for the decay constants of the charmed
mesons, on the one hand, there is a flood of papers on the
theoretical investigation of leptonic decay constants ofD+

and Ds [50–61]; on the other hand, the measurements of
decay constants of the pseudoscalar D+ and Ds mesons
have recently been improved by the CLEO and BaBar col-
laborations [62, 63]. Moreover, the CLEO collaboration re-
ported their work on the value of ratio f

D+s
/fD+ using the



Y.-M. Wang et al.: The transition form factors for semi-leptonic weak decays of J/ψ in QCD sum rules 113

measurement of D+s → l
+ν channel and obtained f

D+s
=

274±13±7MeV [65, 66]. However, the decay constants of
D∗+ andD∗s mesons have not been directly measured in ex-
periments so far. The only available results on fD∗+ and
fD∗0s from the lattice QCD calculations [53, 61, 64] deter-

mine fD∗s = 272± 16
+3
−20MeV, which is smaller than the

value of the decay constant forD+s measured by the CLEO
collaboration [65, 66]. To reduce the theoretical uncertain-
ties in the three-point sum rules of the weak transition form
factors, due to the quark masses, threshold parameters and
Coulomb-like corrections of J/ψ effectively [67], we use the
decay constants fψ and f

D
(∗)−
d,s

calculated from the two-

point QCD sum rules in leading order of αs, the same as
in the three-point sum rules. The explicit calculations of
the decay constants, in the framework of the QCD sum
rule approach, for both J/ψ and D

(∗)
d,s are displayed in Ap-

pendix C. Our results indicate that
fD∗s
fD∗
�
fDs
fD
=1.1, which

is in good agreement with the result of a lattice simula-
tion [64] and with experiments [65, 66].
For the threshold parameters s01 and s

0
2, one should de-

termine them by demanding the QCD sum rules results
to be relatively stable in the allowed regions for M21 and
M22 , the values of which should be around the mass square
of the corresponding first excited states. As for the heavy-
light mesons, the standard value of the threshold in the X
channel would be s0X = (mX +∆X)

2, where ∆X is about
0.6 GeV [68–72], and we simply take it as (0.6±0.1)GeV
for the error estimate in the numerical analysis. When
it comes to the heavy quarkonium, following the method
in [69, 70, 72], we select the effective threshold parameter
to ensure the appearance of the pleasant platform and also
around the mass square of ψ(2S). In this way, the contribu-
tions from both the excited states including ψ(2S) and the
continuum states are contained in the spectral function.

3.1 The numerical results of the form factors

3.1.1 Evaluation of the form factors for the J/ψ→D−

transition

With all the parameters listed above, we can obtain the nu-
merical values of the form factors. The form factors should
not depend on the Borel masses M1 and M2 in a com-
plete theory. However, as we truncate the operator product
expansion up to dimension-5 and keep the perturbative
expansion in αs to leading order, an obvious dependence
of the form factors on these two Borel parameters would
emerge. Therefore, one should look for a region where the
results only mildly vary with respect to the Borel masses,
so that the truncation is reasonable and acceptable.
With a careful analysis, s01 = 13.7 GeV

2 and s02 =
6.1 GeV2 are chosen for the calculation of the form fac-
tor V . We require the contributions from the higher states
to be less than 30% and the value of V does not vary dras-
tically within the selected region for the Borel masses. As
commonly understood, the Borel parametersM21 and M

2
2

should not be too large in order to insure that the contri-
butions from the higher excited states and continuum are

not too significant. On the other hand, the Borel masses
also could not be too small for the sake of validity of
OPE in the deep Euclidean region, since the contribu-
tions of higher dimension operators pertain to the higher
orders in 1

Mi
(i = 1, 2). Different from that adopted in

the previous literature [28, 38], where the ratio of M1 and
M2 was fixed, in the calculation of the form factors, we
let M1 and M2 vary independently as suggested by the
authors of [41, 73]. In this way, we indeed find a Borel
platformM21 ∈ [6.0, 10.0]GeV

2,M22 ∈ [1.0, 2.0]GeV
2, plot-

ted in Fig. 2, which satisfy the conditions discussed above.
One can directly read from this figure that V (q2 = 0) is
0.48+0.07−0.05, whose uncertainties originate from the variation
of the Borel parameters.
Following the same procedure, we also obtain numeri-

cal results for the other three form factors A0, A1 and A2
within the chosen Borel window as shown in Fig. 2. The nu-
merical results of the form factors V ,A0,A1 andA2 at zero
momentum transfer are then

V (0) = 0.81+0.12−0.08 , A0(0) = 0.27
+0.02
−0.03 ,

A1(0) = 0.27
+0.03
−0.02 , A2(0) = 0.34

+0.07
−0.07 . (44)

It needs to be emphasized that the form factors A1(q
2),

A2(q
2) and A0(q

2) should satisfy the relation (mψ +
mD−)A1(0)+ (mψ −mD−)A2(0) = 2mψA0(0) to ensure
the disappearance of the divergence at the pole q2 = 0. The
theoretical uncertainties in the form factors (44) originate
from the Borel massesM21 andM

2
2 . They are at the level of

15%, which implies stable results from the QCD sum rules
approach.
Indeed there are some extra errors originating from the

values of s01 and s
0
2, which correspond to the threshold of

the higher excited resonances and continuum states for the
J/ψ and D channels, respectively. In the QCD sum rule
approach, the values of the threshold parameter usually
are in the vicinity of the mass square of the first physical
excited state; therefore, we do not investigate the depen-
dence of the form factors on the threshold parameter in this
work as in [41, 42], where a larger threshold value of char-
monium is adopted. This uncertainty would cause errors
in the resultant form factors. Besides, the fluctuations of
the charm quark mass can also result in the uncertainties
of the form factors, which are evaluated to be at the level
of 6%–8%. Moreover, the input parameters such as the de-
cay constants of D meson and J/ψ can also bring about
additional uncertainties. Combing the errors from various
parameters discussed above, the uncertainties on the form
factors can be estimated within 20 to 30%, expected by the
general understanding of the theoretical framework.
Next, we can further investigate the q2 dependence of

the form factors V,A0, A1 andA2. The physical region of q
2

for J/ψ→D−l+νl is 0≤ q2 ≤ (mJ/ψ−mD−)
2 � 1.5 GeV2.

However, with the QCD sum rules, we could not obtain the
form factors in the whole physical region, since the addi-
tional singularities – so-called “non-Landau-type” singular-
ities emerge, which have extensively been discussed in [28].
To avoid this kind of singularity, we restrict our calculations
to the range of q2 ∈ [0, 0.47]GeV2. We show the q2 depen-
dence of the form factors V ,A0,A1 andA2 in Fig. 3.
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Fig. 2. Dependence of form factors V , A0, A1 and A2 at q
2 = 0, responsible for the decay of J/ψ→D−, on the Borel masses

In addition, for the convenience of applications to phe-
nomenology, one can parameterize the above form factors
in a three-parameter form [74]:

Fi(q
2) =

Fi(0)

1−aiq2/m2D−+ biq
4/m4

D−

, (45)

where the Fi denote the form factors V ,A0,A1 andA2, and
ai and bi are the parameters to be fixed. Using theQCDsum
rulesFi(q

2) with q2 restrictedwithin a certain kinematic re-
gion, we can fix the parameters ai and bi in the expression.
This double-pole expression for the form factors can be gen-
eralized to the whole kinematic region. Finally, our results
for the parameters ai and bi are given by

aV = 1.65
+0.20
−0.03 , bV = 0.76

+0.44
−0.09 ,

aA0 = 1.97
+0.15
−0.03 , bA0 = 1.19

+0.31
−0.05 ,

aA1 = 0.93
+0.27
−0.12 , bA1 = 0.46

+0.29
−0.01 ,

aA2 = 1.47
+0.14
−0.16 , bA2 = 0.32

+0.19
−0.21 . (46)

For the other form factors, which are discussed in the fol-
lowing subsections, we will adopt the same procedure to
obtain the form factors in the whole kinematic region.

3.1.2 J/ψ→D−s form factors

Now, we move on to the computations of the form fac-
tors for the transition J/ψ→D−s , which is quite similar
to that for J/ψ→D−, only with the d quark in D− being
replaced by s. It is also noted that the threshold parame-
ter s02 = 6.6 GeV

2 for theDs channel and the Borel window
are shifted slightly compared to that of J/ψ→D−. Since
the figures are very similar to the case for J/ψ→D−, we
just omit them. The obtained form factors for J/ψ→D−s
at q2 = 0 are

V (0) = 1.07+0.05−0.02 , A0(0) = 0.37
+0.02
−0.02 ,

A1(0) = 0.38
+0.02
−0.01 , A2(0) = 0.35

+0.08
−0.07 . (47)

The parameters ai and bi defined above for the q
2 de-

pendence formula (with the replacement of D→Ds) are
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Fig. 3. q2 dependence of form factors V , A0, A1 and A2 for
J/ψ→D− within the kinematical region without non-Landau-
type singularities

fixed by

aV = 1.86
+0.26
−0.03 , bV = 0.90

+0.43
−0.04 ,

aA0 = 2.12
+0.0
−0.04 , bA0 = 1.30

+0.0
−0.04 ,

aA1 = 1.18
+0.24
−0.01 , bA1 = 0.27

+0.29
−0.04 ,

aA2 = 1.41
+0.20
−0.29 , bA2 = 0.38

+0.15
−0.01 . (48)

Again, the relation (mψ+mDs)A1(0)+(mψ−mDs)A2(0)
= 2mψA0(0) is well respected, which guarantees that the
hadronic matrix element responsible for the J/ψ→D−s
transition is divergence free due to the pole at q2 = 0. We
show the dependence of the form factors on q2 in Fig. 4.

3.1.3 J/ψ→D∗− form factors

The evaluation of the form factors responsible for J/ψ→
D∗− is performed following the standard procedure, with

Fig. 4. q2 dependence of form factors V , A0, A1 and A2 for
J/ψ→D−s within the kinematical region without non-Landau-
type singularities

appropriate Borel windows obtained. The threshold value
for the D∗− channel takes s02 = 6.8GeV

2 in our numeri-
cal analysis. The form factors at zero momentum transfer
q2 = 0 are collected below as

Ã1(0) = 0.40
+0.03
−0.01 , Ã2(0) = 0.44

+0.10
−0.04 ,

Ã3(0) = 0.86
+0.05
−0.01 , Ã4(0) = 0.91

+0.06
−0.04 ,

Ṽ1(0) = 0.41
+0.01
−0.01 , Ṽ2(0) = 0.63

+0.01
−0.04 ,

Ṽ3(0) = 0.22
+0.03
−0.01 , Ṽ4(0) = 0.26

+0.03
−0.05 ,

Ṽ5(0) = 1.37
+0.08
−0.03 , Ṽ6(0) = 0.87

+0.05
−0.01 . (49)

From the above results, we find that the form factors ob-
tained in the QCD sum rule approach respect the relations
Ã1(0) = Ã2(0) and Ṽ3(0) = Ṽ4(0), which are essential to as-
sure that the hadronic matrix element of J/ψ→D∗− is
divergence free at q2 = 0.
Different from that discussed for the J/ψ→D−d,s case,

not all the form factors that appear in the hadronic matrix
element for J/ψ→D∗− are suitably parameterized in the
form of (45) with the thee-parameter approximation. To be
more specific, the q2 dependence of the form factors Ã1(q

2)

and Ã2(q
2) are written in the following form [75, 76]:

Fi(q
2) =

Fi(0)(
1−aiq2/m2D∗−

)2 , (50)

where Fi represents Ã1 and Ã2, while the other eight form
factors are written in the three-parameter form,

Gi(q
2) =

Gi(0)

1−aiq2/m2D∗−+ biq
4/m4

D∗−

, (51)

where Gi can be Ã3, Ã4 and Ṽi (i = 1–6). We then ex-
tend the form factors to the whole physical region 0≤ q2 ≤
(mJ/ψ−mD∗−)

2 � 1.2 GeV2, by fitting the parameters by

a
˜A1
= 1.77+0.04−0.01 , a

˜A2
= 1.95+0.17−0.25 ,

a
˜A3
= 2.93+0.18−0.08 , b

˜A3
= 2.47+0.54−0.27 ,

a
˜A4
= 2.78+0.05−0.03 , b

˜A4
= 1.78+0.27−0.14 ,

a
˜V1
= 1.96+0.03−0.03 , b

˜V1
= 0.98+0.07−0.06 ,

a
˜V2
= 2.11+0.04−0.04 , b

˜V2
= 0.21+0.05−0.02 ,

a
˜V3
= 1.92+0.0−0.03 , b

˜V3
= 1.87+0.12−0.12 ,

a
˜V4
= 2.96+0.34−0.23 , b

˜V4
= 1.97+1.03−0.34 ,

a
˜V5
= 1.92+0.0−0.12 , b

˜V5
= 1.03+0.0−0.21 ,

a
˜V6
= 2.00+0.27−0.02 , b

˜V6
= 1.08+0.53−0.03 . (52)

The q2 dependence of the form factors is shown in Fig. 5.

3.1.4 The form factors for J/ψ→D∗−s

The computation of the amplitude of J/ψ→D∗−s is almost
the same as that for J/ψ→D∗−; only the d quark in D∗−

is replaced by an s quark, with the difference resulting in
a different Borel platform. Besides, the threshold param-
eter for the D∗−s channel is set by s02 = 7.4 GeV

2 in the
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Fig. 5. q2 dependence of form factors ˜A1, ˜A2, ˜A3, ˜A4, ˜V1, ˜V2, ˜V3, ˜V4, ˜V5 and ˜V6 for J/ψ→D
∗− within the kinematical region

without non-Landau-type singularities

Fig. 6. q2 dependence of form factors ˜A1, ˜A2, ˜A3, ˜A4, ˜V1, ˜V2, ˜V3, ˜V4, ˜V5 and ˜V6 for J/ψ→D
∗−
s within the kinematical region

without non-Landau-type singularities

calculations. The q2 dependence of the form factors falling
into the region of q2 ∈ [0, 0.37]GeV2 is plotted in Fig. 6.

As mentioned before, the form factors Ã1 and Ã2 can be
parameterized in the form of (50), while the other form fac-
tors can be fit in the usual three-parameter form in (51).
The parameters ai and bi can be determined by reproduc-
ing the numbers obtained from the QCD sum rules for the
kinematic region q2 ∈ [0, 0.37]GeV2 and then we generalize
the results to the whole physical region q2 ∈ [0, 0.97]GeV2.
The values of these parameters together with the form fac-
tors at q2 = 0 are collected for convenience as,

a
˜A1
= 1.92+0.0−0.05 , a

˜A2
= 1.85+0.01−0.21 ,

a
˜A3
= 3.07+0.12−0.01 , b

˜A3
= 1.98+0.80−0.16 ,

a
˜A4
= 3.08+0.06−0.02 , b

˜A4
= 2.08+0.60−0.26 ,

a
˜V1
= 2.05+0.13−0.02 , b

˜V1
= 0.90+0.29−0.06 ,

a
˜V2
= 2.53+0.06−0.12 , b

˜V2
= 0.07+0.17−0.35 ,

a
˜V3
= 2.04+0.16−0.12 , b

˜V3
= 2.14+0.07−0.0 ,

a
˜V4
= 3.32+0.37−0.33 , b

˜V4
= 1.76+1.58−0.67 ,

a
˜V5
= 1.92+0.22−0.03 , b

˜V5
= 0.81+0.40−0.05 ,

a
˜V6
= 2.00+0.26−0.04 , b

˜V6
= 0.81+0.55−0.15 , (53)

and

Ã1(0) = 0.53
+0.03
−0.01 , Ã2(0) = 0.53

+0.05
−0.01 ,

Ã3(0) = 0.91
+0.05
−0.01 , Ã4(0) = 0.91

+0.06
−0.01 ,

Ṽ1(0) = 0.54
+0.01
−0.01 , Ṽ2(0) = 0.69

+0.05
−0.06 ,

Ṽ3(0) = 0.24
+0.03
−0.01 , Ṽ4(0) = 0.26

+0.03
−0.03 ,

Ṽ5(0) = 1.69
+0.10
−0.03 , Ṽ6(0) = 1.14

+0.08
−0.01 . (54)

In the same way, the relations Ã1(0) = Ã2(0) and Ṽ3(0) =
Ṽ4(0) are well satisfied.

4 Decay rates for semi-leptonic weak decays
of J/ψ

With the form factors derived above, we can perform cal-
culations on the partial widths of the semi-leptonic decays
of J/ψ. The relevant CKM parameters are directly taken
from the particle data book [48]:

|Vcd|= 0.2271 , |Vcs|= 0.973 . (55)
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For the semi-leptonic decays J/ψ → D(∗)−(d,s)l
+νl (l =

e, µ), the differential partial decay rate is written as

dΓ
ψ→D

(∗)−
(d,s)

l+νl

dq2
=
1

3

1

(2π)3
1

32m3ψ

×

∫ umax
umin

∣∣∣∣M̃ψ→D(∗)−
(d,s)

l+νl

∣∣∣∣
2

du ,

(56)

where u = (pl+ + pD)
2; pl+ and pD are the momenta of

l+ and D
(∗)
(d,s) respectively; |M̃ |

2 is the square of the tran-

sition amplitude after integrating over the angle between

the l+ and D
(∗)−
(d,s). The transition amplitude M̃ for J/ψ→

D
(∗)−
(d,s)l

+νl reads

M̃
ψ→D

(∗)−
(d,s)

l+νl
=
GF√
2
V ∗cq
〈
D
(∗)
(d,s)

∣∣q̄γµ(1−γ5)c|J/ψ〉
× ν̄lγ

µ(1−γ5)l . (57)

Finally we get the branching ratios of the semi-leptonic
decays:

BR(J/ψ→D−e+νe) = 7.3
+4.3
−2.2×10

−12 ,

BR(J/ψ→D−µ+νµ) = 7.1
+4.2
−2.2×10

−12 ,

BR(J/ψ→D−s e
+νe) = 1.8

+0.7
−0.5×10

−10 ,

BR(J/ψ→D−s µ
+νµ) = 1.7

+0.7
−0.5×10

−10 ,

BR(J/ψ→D∗−e+νe) = 3.7
+1.6
−1.1×10

−11 ,

BR(J/ψ→D∗−µ+νµ) = 3.6
+1.6
−1.1×10

−11 ,

BR(J/ψ→D∗−s e
+νe) = 5.6

+1.6
−1.6×10

−10 ,

BR(J/ψ→D∗−s µ
+νµ) = 5.4

+1.6
−1.5×10

−10 , (58)

where we have combined various uncertainties in the form
factors discussed in the previous section to determine
the final error tolerance in our theoretical calculations.
Our predictions are much below the present experimental
upper bounds [2]: BR(J/ψ→D−s e

+νe+c.c.)< 4.9×10−5,
BR(J/ψ→D−e+νe+c.c.)< 1.2×10−5.
A few remarks are in order. First, the sum of the

branching fractions of semi-leptonic decays of J/ψ whose
final state includes D−s , D

∗−
s , e and µ and their charge

conjugate channels can reach values as large as 3.1×10−9,
which is expected to be marginally observed at BESIII.
Second, it is worthwhile to point out that the decay rates
for the dominant semi-leptonic weak decays of J/ψ ob-
tained in [1] were about 7× 10−9, which is two times
larger than that calculated in this work. This discrepancy
can attribute to the heavy-quark spin symmetry and the
non-recoil approximation used in [1], also to the differ-
ent methods used to estimate the non-perturbative form

factors.2 Third, the ratio of R1 ≡
BR(J/ψ→D∗−s e

+νe)

BR(J/ψ→D−s e+νe)
� 3.1

2 In [1], the ISGW model [77] was employed to compute the
single form factor η12, while we adopt the QCD sum rule ap-
proach to calculate the form factors in this work.

is about 2 times larger than the value calculated in [1],
where the assumption of heavy-quark spin symmetry and
the non-recoil approximation were adopted. Fourth, the

ratios R2 ≡
BR(J/ψ→D−s e

+νe)

BR(J/ψ→D−e+νe)
and R3 ≡

BR(J/ψ→D∗−s e
+νe)

BR(J/ψ→D∗−e+νe)

should be equal to
∣∣Vcs
Vcd

∣∣2 � 18.4 under the SU(3) flavor
symmetry limit. Our numerical calculations show that
R2 � 24.7 and R3 � 15.1, which implies a large effect of
SU(3) symmetry breaking.

5 Discussion and conclusions

The charmonium J/ψ meson can decay via the strong
and electromagnetic interactions; thus, weak decays of J/ψ
should be very rare unless there is new physics beyond the
standard model to make a substantial contribution. If such
weak decays can be measured by the future experiments
with sizable branching ratios, it would be a clear signal of
new physics.
To make the new physics signal clearly distinguishable

from the standard model, a careful study of weak decays
in SM is needed. In this work, we calculated the form fac-
tors of the weak transitions of J/ψ→D(∗)(d,s) in terms of
the QCD sum rules. With the form factors, we estimate
the branching ratios of the semileptonic weak decays of
J/ψ and find that the sum of the branching ratios cor-
responding to the dominant modes is about 3.1× 10−9,
which may be marginally measured by BESIII. The QCD
sum rule approach possesses uncontrollable errors, these
being as large as 20%–30%, as confirmed by our numer-
ical results. Moreover, due to a Coulomb-type correction
in heavy quarkonium decay (or Bc), which may be mani-
fest as the ladder structure in the loop-triangle (as part
of multi-loop diagrams), the spectral function needs to be
multiplied by a finite renormalization factor [17, 41, 42, 78].
This would bring about another kind of uncertainty. It
is expected that this kind of correction can give birth to
the double multiplication of the form factors at maximal
momentum transfer. However, in this work, we calculate
both the three-point QCD sum rules of the weak transi-
tion form factors and the two-point sum rules for the decay
constant of J/ψ to the same order of αs. Then it is ex-
pected that most uncertainties due to the Coulomb-like
corrections are canceled in our calculations; therefore, the
Coulomb-like corrections for the J/ψ channel are not in-
cluded in our calculations. As for the heavy-light mesons,
there are no corrections in the power of the inverse velocity
for it, since the light quark moves relativistically. There-
fore, one should explore the sum rules for both three-point
and two-point correlation functions up to next-to-leading
order in the strong coupling constant, so that Coulomb-
like corrections to the heavy-light mesons can be canceled
effectively. Moreover, an explicit calculation of Coulomb-
like corrections to the heavy-light vertex in the triangle
diagram is still not available now, which has to be left for
further considerations.
One can trust the numerical results to a certain accu-

racy; at least the order of magnitude is reliable. With these
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form factors we may continue to estimate the rates of non-
leptonic weak decays of J/ψ as long as the factorization
theorem can be proved to hold. That would be the contents
of our next work [79].
The branching ratios of semi-leptonic weak decays of

J/ψ are very small in SM, even though their strong decay
modes are OZI-suppressed. Our numerical results indicate
that even with the large database that will be collected by
BESIII, such weak decay modes may only marginally be
observed. Therefore, we lay our expectation on our BESIII
colleagues and hope they will provide a sufficiently large
database to make this challenging field more fruitful.
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Appendix A: The explicit forms of the Wilson
coefficients for Πµν

In this appendix, we would like to show the explicit ex-
pressions of the Wilson coefficients appearing in (11)–(14)
after a Borel transformation. As mentioned before, only
the perturbative part contributes to the correlation func-
tion for the J/ψ decays to D−d,s at the leading order of the
heavy-quark mass expansion and the αs expansion series.
Namely, (10) can be written as

fi = f
pert
i I+O(αs)+O(1/mh) , (A.1)

with h being the heavy charm quark here. The fperti can be
related to ρperti defined in (34) by

fperti =

∫ s02
(mc+mq)2

ds2

∫ s01
sL1

ds1
ρperti

(
s1, s2, q

2
)

(
s1−p21

)(
s2−p22

) ,
(A.2)

or

B̂fperti =

∫ s02
(mc+mq)2

ds2

∫ s01
sL1

ds1
1

M21
e−s1/M

2
1
1

M22
e−s2/M

2
2

×ρi
pert
(
s1, s2, q

2
)
. (A.3)

The lowest bound of s1, i.e., s
L
1 can be determined by (31)

to be

sL1 =−
1

2m2q

[
m4c−

(
2m2q+ s2+ q

2
)
m2c+m

2
q

+ s2q
2−m2q

(
s2+ q

2
)

+

√
m4c−2

(
m2q+ s2

)
m2c+

(
m2q− s2

)2
×
√
m4c−2

(
m2q+ q

2
)
m2c+

(
m2q− q

2
)2]
,

(A.4)

according to the Landau equation [80]3

The obvious forms of ρperti (i= 0, 2, 4, 5) are

ρpert0

(
s1, s2, q

2
)
=−

3

4π2λ3/2

×
[
mcλ+(mc−mq)s1

(
2m2c−2m

2
q− s1+ s2+ q

2
)]
,

ρpert2

(
s1, s2, q

2
)
=−

3s1
2π2λ5/2

×
{
(mc−mq)s1

[
6m4c−6

(
2m2q+ s1− s2

)
m2c

+6m4q+(s1− s2)
2+6m2q(s1− s2)

]
+mc[2(mc−mq)(2mc+mq)− s1+ s2]λ

+ q2
[
2(mc−mq)s1

(
3m2c−3m

2
q− s1+2s2

)
+mcλ+(mc−mq)s1q

2
]}
,

ρpert4

(
s1, s2, q

2
)
=

3

4π2λ5/2

×
{[
−mcλ

2+(mc−mq)
(
2s2m

2
c+ s1

(
2m2q+ s1− s2

))]
λ

+2(mc−mq)s1
[
3(s1+ s2)m

4
c

−2
(
3(s1+ s2)m

2
q+(s1− s2)(s1+2s2)

)
m2c

+(s1− s2)
2s2+3m

4
q(s1+ s2)+2m

2
q(s1− s2)(s1+2s2)

]
+(mc−mq)q

2
[
2s1
(
s22+
(
−2m2c+2m

2
q+ s1

)
s2

+
(
m2c−m

2
q

)(
−3m2c+3m

2
q+4s1

))
−
(
2m2c+ s1

)
λ−4s1

(
m2c−m

2
q+ s2

)
q2
]}
,

ρpert5

(
s1, s2, q

2
)
=

3

8π2λ3/2

×
{
λ
(
mqs1+mcs2−mcq

2
)

−2(mc−mq)
[
λm2c+

(
m2c−m

2
q

)
s1
(
m2c−m

2
q− s1+ s2

)
+ s1
(
m2c−m

2
q+ s2

)
q2
]}
. (A.5)

In this appendix, we adopt the notion λ≡ λ(s1, s2, q2) for
convenience.

Appendix B: The expressions of the Wilson
coefficients for Πµνρ

Similarly, we will display the forms of the Wilson coef-
ficients emerging in (19)–(28) after performing a Borel
transformation. As has been discussed in the text, only the
perturbative part contributes to the three-point function,

Fi = F
pert
i I+O(αs)+O(1/mh) . (B.1)

The relation between F perti and ρ′perti is given by

F perti =

∫ s02
(mc+mq)2

ds2

∫ s01
sL1

ds1
ρ′perti

(
s1, s2, q

2
)

(
s1−p21

)(
s2−p22

) (B.2)
or

B̂F perti =

∫ s02
(mc+mq)2

ds2

∫ s01
sL1

ds1
1

M21
e−s1/M

2
1
1

M22
e−s2/M

2
2

×ρ′perti

(
s1, s2, q

2
)
, (B.3)

3 For a review, see [80].
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where the definition of sL1 is given in (A.4). The explicit ex-
pressions of ρ′perti (i = 1, 4, 5, 6, 7, 9, 11, 12, 14, 15) are dis-
played here:

ρ′pert1

(
s1, s2, q

2
)
=

3

4π2λ5/2

×
{
−4s21m

4
c+
(
8m2qs

2
1+(s1− s2)(s1+ s2)

2

− (s1−3s2)λ
)
m2c+2mq(s1+ s2)λmc−4m

4
qs
2
1

+ s2(3s1+ s2)
(
λ− (s1− s2)

2
)
−m2q(s1+ s2)

(
s21− s

2
2+λ

)
+ q2
[
4s1m

4
c+
(
3s22+10s1s2− s1

(
8m2q+ s1

)
+λ
)
m2c

−2mqλmc+3s2(s1+ s2)
2+4m4qs1− s2λ

+m2q
(
s21−10s1s2−3s

2
2+λ

)
+
(
m2c−m

2
q+ s2

)
q2
(
−s1−3s2+ q

2
)]}
,

ρ′pert4

(
s1, s2, q

2
)
=

3s1
4π2λ5/2

×
{
−4s2m

4
c−2

(
−4s2m

2
q+ s

2
1+3s

2
2−4s1s2−λ

)
m2c

+4mqmcλ−4m
4
qs2− (s1+3s2)

(
(s1− s2)

2−λ
)

+2m2q
(
s21−4s1s2+3s

2
2−λ

)
+ q2
(
4m4c+4

(
s2−2m

2
q

)
m2c

+4m4q+3(s1+ s2)
2−4m2qs2−λ

+ q2
(
2m2c−2m

2
q−3s1− s2+ q

2
))}
,

ρ′pert5

(
s1, s2, q

2
)
=

1

4π2λ5/2

×
{
−
(
s1+ s2− q

2
)[
3
(
m2c−m

2
q+ s2

)
q4

−6
(
(2s1+ s2)m

2
c+ s2(s1+ s2)−m

2
q(2s1+ s2)

)
q2

−3
(
2s1m

4
c−
(
4s1m

2
q+3s

2
1+ s

2
2−λ

)
m2c+2mqmcλ

+2m4qs1+m
2
q

(
3s21+ s

2
2−λ

)
+ s2
(
s21− s

2
2+λ

))]
−2s2

[
3s1
(
−2
(
m2c−m

2
q

)2
+ s21− s

2
2−4
(
m2c−m

2
q

)
s2
)

−3
(
2m2c+ s1

)
λ+3s1q

2
(
q2−2(s1+ s2)

)]}
,

ρ′pert6

(
s1, s2, q

2
)
=

3

4π2λ5/2

×
{
−2s1(3s1+ s2)m

4
c+2

[
s1
(
2m2q+ s1− s2

)
(3s1+ s2)

− (2s1+ s2)λ
]
m2c−4mqs1mcλ

+ s1
[
−2(3s1+ s2)m

4
q+2

(
−3s21+2s1s2+ s

2
2+λ

)
m2q

+(s1− s2)
2(s1+ s2)− (s1+3s2)λ

]
+ q2
[
2s1m

4
c+2

(
λ−2s1

(
m2q+2s1

))
m2c

+ s1
(
2m4q+8s1m

2
q− (s1+ s2)(3s1+5s2)+λ

)
+ s1
(
2m2c−2m

2
q+3s1+5s2− q

2
)
q2
]}
,

ρ′pert7

(
s1, s2, q

2
)
=−

3

16π2λ5/2

×
{(
2(mc−mq)

2−2s2
)
λ2−2

[
s2
(
−s1+ s2− q

2
)

+
(
m2c−m

2
q

)(
s1+ s2− q

2
)](
s1− s2+ q

2
)
λ

−8
[(
m2c−m

2
q+ s2

)(
s1+ s2− q

2
)
−2s1s2

]
×
[((
s1+ s2− q

2
)2
−4s1s2

)
m2c+ s1

(
m2c−m

2
q+ s2

)2
+ s21s2− s1

(
m2c−m

2
q+ s2

)(
s1+ s2− q

2
)]}
,

ρ′pert9

(
s1, s2, q

2
)
=−

3

8π2λ5/2

×
{
−
(
(mc−mq)

2− s2
)
λ2−

[
s2
(
−s1+ s2− q

2
)

+
(
m2c−m

2
q

)(
s1+ s2− q

2
)](
s1− s2+ q

2
)
λ

+2
[
λm2c+

(
m2c−m

2
q

)
s1
(
m2c−m

2
q− s1+ s2

)
+ s1
(
m2c−m

2
q+ s2

)
q2
]
λ

−4
[(
m2c−m

2
q+ s2

)(
s1+ s2− q

2
)
−2s1s2

]
×
[((
s1+ s2− q

2
)2
−4s1s2

)
m2c+ s1

(
m2c−m

2
q+ s2

)2
+ s21s2− s1

(
m2c−m

2
q+ s2

)(
s1+ s2− q

2
)]}
,

ρ′pert11

(
s1, s2, q

2
)
=−

3s1
8π2λ5/2

×
{
−λ2−

(
−2m2c+2m

2
q+ s1− s2− q

2
)

×
[
−2(mc−mq)

2− s1+ s2+ q
2
]
λ

−4
[((
s1+ s2− q

2
)2
−4s1s2

)
m2c+ s1

(
m2c−m

2
q+ s2

)2
+ s21s2− s1

(
m2c−m

2
q+ s2

)(
s1+ s2− q

2
)]

×
(
−2m2c+2m

2
q+ s1− s2− q

2
)}
,

ρ′pert12

(
s1, s2, q

2
)
=−

3

8π2λ5/2

×
{
s1λ

2− s1
(
−2m2c+2m

2
q+ s1− s2− q

2
)(
s1+ s2− q

2
)
λ

+2
[
λm2c+

(
m2c−m

2
q

)
s1
(
m2c−m

2
q− s1+ s2

)
+ s1
(
m2c−m

2
q+ s2

)
q2
]
λ

−4s1
[((
s1+ s2− q

2
)2
−4s1s2

)
m2c+ s1

(
m2c−m

2
q+ s2

)2
+ s21s2− s1

(
m2c−m

2
q+ s2

)(
s1+ s2− q

2
)]

×
(
−2m2c+2m

2
q+ s1− s2− q

2
)}
,

ρ′pert14

(
s1, s2, q

2
)
=−

3

4π2λ7/2

×
{
−2m2c

(
s1+ s2− q

2
)
λ2

− s1
[
4s1s2

(
−2m2c+2m

2
q+ s1− s2− q

2
)

−
(
s2
(
−s1+ s2− q

2
)
+
(
m2c−m

2
q

)(
s1+ s2− q

2
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×
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2
)
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(
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2
q+ s2

)(
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2
)

×
(
2m2c−2m

2
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2
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λ
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[
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2
)2
+ s1s2
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−3
(
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2
q+ s2

){(
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2
)2
+6s1s2

}
×
(
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2
)
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(
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(
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2
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(
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2
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)2
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2
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)
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(
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−2m2c
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− s1
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4s1s2
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2
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2
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×
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+4
[
−10s22

(
s1+ s2− q

2
)
s31

+12s2
(
m2c−m

2
q+ s2

)((
s1+ s2− q

2
)2
+ s1s2

)
s21

−3
(
2s2
((
s1+ s2− q

2
)2
−4s1s2

)
m2c



120 Y.-M. Wang et al.: The transition form factors for semi-leptonic weak decays of J/ψ in QCD sum rules

+
(
m2c−m

2
q+ s2

)2((
s1+ s2− q

2
)2
+6s1s2

))(
s1

+ s2− q
2
)
s1+2

(
m2c−m

2
q+ s2

)(
m2c(s1+ s2− q

2
)4

+2s1
((
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2
q+ s2
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s1+ s2− q
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2
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)2
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. (B.4)

Appendix C: Decay constants of J/ψ and

D
(�)
d,s in two-point QCD sum rule
approach

In this appendix, we would like to collect the sum rules for
the decay constants of J/ψ and D

(∗)
d,s for the completeness

of the paper. The decay constant of J/ψ in the two-point
QCD sum rule approach can be written as [69, 82]

f2ψm
2
ψe
−
m2ψ

M2 =

∫ s0ψ
4m2c

ds
s

4π2

(
1−
4m2c
s

)1/2(
1+
2m2c
s

)
e
− s
M2

+

[
−
m2c
4M2

+
1

16
+
1

48
e
−
4m2c
M2

]
〈0|
αs

π
G2µν |0〉 ,

(C.1)

where the non-relativistic approximation for the gluon con-
densate has been adopted for the convenience of perform-
ing a Borel transformation. It is observed that the gluon
condensate has a tiny effect on the results of the form fac-
tors and hence these are neglected in the sum rules of the
charmed mesons. The non-perturbative condensates used
in the evaluation of the sum rules can be grouped as

〈0|q̄q|0〉=−(1.65±0.15)×10−2GeV3 (q = u, d) ,

〈0|s̄s|0〉= (0.8±0.1)〈0|q̄q|0〉 ,

〈0|
αs

π
G2µν |0〉= 0.005±0.004GeV

2 ,

〈0|q̄iσ ·Gqi|0〉=m
2
0〈0|q̄iqi|0〉 , (C.2)

wherem20 = (0.8±0.2)GeV
2 and the subscript “i” denotes

the flavor of the quarks. Based on the two-point sum rules
of J/ψ and the parameters shown above, we can derive
the decay constant of J/ψ as 337+12−13MeV, where we have
combined the uncertainties from the variations of the Borel
masses and the threshold value for the J/ψ channel.
The sum rules for the decay constant ofDq can be given

by [82–86]

m4Dq
(mc+mq)2

f2Dqe
−
m2Dq

M2

=
3

8π2

∫ s0Dq
(mc+mq)2

ds

[
1−
(mc−mq)2

s

]
λ1/2
(
s,m2c ,m

2
q

)
e
− s
M2

+

(
−mc+

mq

2
+
mqm

2
c

2M2

)
e
−
m2c
M2 〈0|q̄q|0〉

−
mc

2M2

(
1−

m2c
2M2

)
e
−
m2c
M2 〈0|q̄σ ·Gq|0〉 , (C.3)

from which we can arrive at the decay constants of the
pseudoscalar charmed mesons: fDd = 166

+9
−10MeV and

fDs = 189
+9
−10MeV.

The decay constants of the charmed vector mesons fD∗q
in the framework of the QCD sum rule approach can be
calculated to be [82, 85, 87]

f2D∗qm
2
D∗q
e
−
m2
D∗q
M2

=
1

8π2

∫ s0
D∗q

(mc+mq)2
dsλ1/2

(
s,m2c ,m

2
q

)

×

[
2−
m2c+m

2
q−6mcmq
s

−

(
m2c−m

2
q

)2
s2

]
e
− s
M2

+

{[
−

(
mc+

8

3
mq

)
+
1

2

mqm
2
c

M2

]
e
−
m2c
M2

+
2mq
(
4M2−m2c

)
3M2

}
〈0|q̄q|0〉

+
m3c
4M4

e
−
m2c
M2 〈0|q̄σ ·Gq|0〉 , (C.4)

from which we can achieve the decay constants of the
charmed vector mesons: fD∗

d
= 240+10−10MeV and fD∗s =

262+9−12MeV.
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